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Current methods for computing vortex sheet separation use a regularization parameter
which is discontinuous from the body to the vortex sheet. We propose two methods for
reducing the errors associated with the discontinuity and improving convergence with
respect to the regularization parameter. The “velocity smoothing” method is the simpler
of the two, and removes the discontinuity in regularization from one of the two equations
where it occurs. The “tapered smoothing” method removes the discontinuity from both
equations. In a model problem, both methods are found to converge much more rapidly
(with exponents 3/2 and 2 versus 1/2 for the standard method) as the regularization
parameter tends to zero. Unsteady algorithms are proposed for evolving the free sheet
using the two methods, and are tested in a benchmark problem. Accuracy is significantly
improved for similar computational expense.

© 2010 Elsevier Inc. All rights reserved.

Regularization

1. Introduction

In a generic laminar high-Reynolds-number flow near a solid surface, a thin boundary layer of large vorticity forms at the
surface. In the limit of infinite Reynolds number (or zero dimensionless viscosity), the boundary layer width shrinks to zero.
It is then called a “vortex sheet” [1], and is a line distribution of vorticity in a two-dimensional flow. On a solid surface, the
vortex sheet strength distribution is determined by the condition that fluid does not penetrate the body together with a con-
dition on the total vorticity (or circulation) present on the body. For a sharp-edged body such as a Joukowski airfoil, the clas-
sical Kutta condition determines how the flow speed at the sharp edge can be made finite by the flux of vorticity from the
body into the flow at the sharp edge, which is known as “separation” [2]. Recently, Jones has developed a general compu-
tational method for the separation of vortex sheets from a rigid plate with prescribed motion [3]. This work builds on pre-
vious work by Krasny on computational methods for the dynamics of isolated vortex sheets [4,5] and vortex sheets shed
from a rigid plate [6]. In [7], Nitsche and Krasny simulated the axisymmetric vortex sheet shed from a rigid body (a piston
tube). They obtained very good agreement with experiments in terms of the detailed shapes of the vortex sheets as they
rolled up into vortex rings, which was an important validation for these models of vortex sheet separation. Regularization
of the vortex sheet using a smoothing parameter is a common element of these studies, and was used in earlier work by
Chorin and Bernard [8]. Regularization is one of the most robust approaches for preventing numerical instabilities in simu-
lations of vortex sheets; [5] lists some of the alternative approaches which have developed since the early simulation of Ros-
enhead [9]. The method for rigid bodies was afterwards extended to deforming bodies with motions which are prescribed
[10,11] or fully coupled to the fluid [12,13].

A more approximate model lumps the vorticity from the sheet into a small number of discrete point vortices, the strength
of which varies in time according to the Kutta condition [14-16]. Separation from a smooth surface (a cylinder) has also been
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studied using a vortex sheet model [17]. In this case the location of separation becomes an additional unknown to be solved
for at each time step.

The convergence rate as the regularization parameter § is taken to 0 was studied in some detail by Krasny for isolated
vortex sheets [4]. For vortex sheets separating from a solid body, the convergence behavior as § — 0 was addressed by Nit-
sche and Krasny [7], Nitsche [18], and Shukla and Eldredge [10]. However, these works did not report the convergence rate.
The present work provides a detailed study of the convergence rate and methods for its improvement. We first investigate
the convergence rate with respect to § for vortex sheets separating from a plate with sharp edges. We then propose two
numerical methods which decrease the error due to 4, relative to existing methods, in the creation and dynamics of vorticity.
In Section 2 we give the equations governing vortex sheet separation and dynamics in notation similar to Jones [3]. In Sec-
tion 3 we compute the flow for a benchmark problem—a half-period of sinusoidal oscillation of a plate—using the existing
method of uniform smoothing on the free vortex sheets and zero smoothing on the plate. In Section 4 we pose a model prob-
lem which shows clearly the convergence rates with respect to ¢ in different important quantities both near and far from the
plate edge. We study the model problem with the previous method, which we call “standard smoothing,” and with the new
methods, which we call “velocity smoothing” and “tapered smoothing.” The velocity smoothing method uses smoothing
only for computing the velocity of the free vortex sheet. The tapered smoothing method uses smoothing which tapers to zero
at the plate edge. We identify the convergence rates for all methods with respect to smoothing parameters, and criteria
needed for relatively rapid convergence.

In Section 5 we formulate a simple velocity smoothing algorithm for unsteady problems, and test it on the oscillating
plate problem. We find that errors tend to zero much more rapidly than in the standard smoothing method. In Section 6
we formulate a tapered smoothing algorithm for unsteady problems. The important features are: a new mesh for the free
vortex sheet using a “mesh function,” a power-law interpolation of the free sheet vortex sheet shape near the plate edge,
and a continual pruning of mesh points for computational efficiency. Here too, errors tend to zero rapidly, and good agree-
ment is obtained with the results of the velocity smoothing method.

2. Creation and dynamics of vortex sheets

We consider the prescribed motion of a rigid flat plate started from rest in an inviscid fluid, as in [3]. The plate moves
transversely to itself with sinusoidal oscillation, and has a position in the complex plane given by:

B .KC T
g(s7t)75—17cos<ﬁt>, -1<s< 1. (1)
Here s is arc length along the plate. As time t increases from zero, the plate velocity increases linearly, and displacement in-
creases quadratically, with time. The parameter KC, called the Keulegan-Carpenter number [19], is half the period of oscil-
lation. For small viscosity (or, in dimensionless terms, large Reynolds number), a thin boundary layer forms on the plate,
across which the component of fluid velocity tangent to the plate is brought sharply to zero on the plate [1]. Outside of
the boundary layer, the flow is nearly irrotational. At the plate edges, the fluid in the boundary layer moves off of the plate
into the outer flow, where it is called a free shear layer. In the limit that the Reynolds number becomes infinite, the boundary
layer and free shear layers tend to lines of zero thickness, and are called bound and free vortex sheets, respectively [2]. A
computed example of free vortex sheets are the dotted lines of Fig. 1, which emanate from the flat plate. The fluid velocity
is discontinuous across a vortex sheet, but only in its component tangent to the sheet. The free vortex sheets emanate from
each edge of the plate continuously in time. We represent the free vortex sheets and the body as a single complex contour
{(s,t), with signed arc length s increasing from s;,;;,(t) < —1 to —1 on the “minus” sheet, from —1 to 1 on the body, and from 1
to smax(t) on the “plus” sheet. The vortex sheet strength (equal to the local jump in tangential velocity) along the contour is
denoted 7(s,t). Here positive y corresponds to counterclockwise fluid rotation. The cumulative circulation along the contour
is defined as the integral of vorticity:
S
I(s,t) = p(s, t)ds'. (2)
Smin

By Kelvin’s Circulation Theorem, the circulation is conserved at fixed material elements of the free sheets [2]. Circulation
thus serves as a Lagrangian marker for the free vortex sheets. Following [3] we define

r.(t)=ra,e = —[quy(s’,t)ds', 3)
-1
I (t)=I(=1,t) :/ 9(s', 6)ds’ 4)

Thus I'.(t) is the negative of the total circulation in the plus sheet and I"_(t) is the total circulation in the minus sheet. In (3)
we have used the fact that the total circulation in the flow is zero at all times by Kelvin’s Circulation theorem, which requires
the total circulation in the flow at any time to equal its initial value, which is zero for a flow started from rest [2].

The dynamics of the flow around a plate with prescribed motion may be summarized in three equations. The first equa-
tion is the kinematic condition, which states that the components of fluid velocity and plate velocity normal to the plate
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Fig. 1. The position of the plate and free vortex sheets at time t = KC, computed using standard smoothing with 6= 0.2 (a), 0.1 (b), 0.05 (c).

must match. In other words, fluid does not penetrate the plate. The second condition is the Kutta condition, which states that
fluid velocity must be finite at the edges of the plate. The third equation is the Birkhoff-Rott equation, which gives the veloc-
ity of the vortex sheets. We now derive each of these equations, similarly to [3].

The complex-conjugate of the complex fluid velocity u, + iu, induced at a point z by the bound and free vortex sheets is
given by the Biot-Savart law for vortex sheets [1,2]:

o1 e (s E)
ux_luy‘liﬁ/smm mds (5)

In the limit that z approaches a point {(s,t) on the rigid plate (Eq. (1)), the portion of the integral in Eq. (5) over the plate
—1<s<1is defined as a principal value integral:

1 fyst,, 1m0 dr 10 dr
_1 Dy 1L a1 & _1<s<l 7
il 55w o wrn ), oo s @)

In Eq. (7), following [3], we have reparametrized the integrals over the free sheets by circulation, which is conserved in time
on fluid particles comprising the free sheets. It is thus easy to keep track of I'(s,t) at all material points on the free sheets and
obtain y(s,t) on the free sheets, when needed, as 9sI'(s,t).

The normal to the plate is in the +y-direction. We denote the normal component of the plate velocity by v(s,t), and set it
equal to uy in Eq. (7). After a minor rearrangement we obtain the kinematic condition:

. 1 Mys,t)y,, 1 71 (s, t) ;1 fmee () ,
— . = — - — _— — _— -1 <s <.
the = ity s 2mi)  s—+ ds tomi /Smm {(s,t) — (s, D) ds +27u’/1 {s,t) = {(s', 1) ds, -l1<s<1 (6)

1 /1 y(s,t) ;o _ 1 r-(t) dr’ 1 o dr'
E]fl - ds —f(s,t)—v(s,t)JrRe[—ﬁ/0 7§(s,t)—é(l“’,t)+ﬁ/o HOGERGRIE (8)

For a known right hand side, Eq. (8) is a Cauchy singular integral equation to be solved for y on the plate. A solution method
convenient for computation is to expand the right hand side f{s,t) as a Chebyshev series [20]:
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f(s,t)= ifk cos(kf), 0 = arccos(s). (9)
k=0

The solution to Eq. (8) is then

9(s,t) = 2 kz:: fosin(ko) + == 2£ iolf(‘;j(g) +C = arccos(s), (10)

where Cis an arbitrary constant. It is fixed by Kelvin’s Circulation theorem, which requires the total circulation in the flow to
be zero at all times. Thus

1
/ (s, 0)ds' — T () + T_(£) = 0. (11)
-1
With this constraint,
c .- (12)
T

The Kutta condition states that the velocity must be finite at the plate edges. Thus the jump in tangential velocity y(s,t) must
be finite at s = +1. Eq. (10) then implies that

r.(t)-T.(t)
T

—fi 2o+ =0. (13)

Eq. (13) is two equations for two unknowns, I'.(t). With I'.(t) thus chosen, the bound vorticity (Eq. (10)) becomes
P(s,t) =2 fisin(ko). (14)
k=1

For the purpose of computation, it is convenient to analytically remove the logarithmic singularities of f(s,t) in Eq. (6) at
s =1, which cause slow (~k~') decay of the Chebyshev coefficients {f,}. We thus write

f(s,t) =f(s,t) +21—n85F(1,t) log(1 —s) +i85F(71,t) log(1 +5), (15)

21

where f (s,t) is a bounded continuous function. Therefore its Chebyshev coefficients, {f«}, decay faster than those of f. In
terms of {f} the Kutta conditions (Eq. (13)) become

Fr2fo - o0 Flog) + Lar-1n1xlog) + FE -0 (16)
Also, the solution y (Eq. (14)) becomes
P(s,t) =2 Zx:fk sin(k0) +%851"(1,t)(n —0)+ %851’(71,[)6. (17)

k=1

Continuity of y from the body to the vortex sheets may be seen by inserting 6 = 0 and = into Eq. (17).

Having solved for the strength of bound vorticity and the circulation in the free sheets at each time, we may apply Eq. (6)
on the free sheets to obtain the Birkhoff-Rott equation for the motion of the free sheets. A point {(I',t) on the plus free sheet,
for example, moves with the local fluid velocity given by the limit of Eq. (6) on the plus sheet which again becomes a prin-
cipal value integral, similar to that in Eq. (7):

N Y A TGN ;1o dr’ 1 o dr’
W0 =gm | et am ), wrn-are ml, are-are [0

(18)

For {(I,t) on the minus sheet, the principal value integral switches from the plus sheet to the minus sheet. Egs. (16)-(18)
represent a system of equations to be solved at each time ¢t for y(s,t) on the plate, the total circulation in the free sheets,
I'.(t), and the positions of the free sheets (with f computed during the solution using Egs. (8) and (15)).

3. Numerical method with uniform regularization

We first investigate a type of smoothing which has been employed in previous works [3,6,10-12] for simulating the sep-
aration of vortex sheets. After Rosenhead’s early study [9], it was observed that simple discretizations of the principal value
integral in the Birkhoff-Rott equation (18) can lead to chaotic motions as the mesh size is reduced. Krasny found that the
chaotic motions are caused by the rapid growth of discretization errors [21], and used a simple regularized form of Eq.
(6) to suppress the errors [4]:
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= 1 Smax {(s,t) = {(s',0) /
Ol(S,t) = 5= / (s, t ds'.
tg( / ) 2mi Smin /( ) |C(S7 t) C(S/, t)|2 5(2)

Krasny found that the errors are suppressed when the uniform smoothing parameter 5y exceeds the smallest mesh spacing in
the discretization of Eq. (19).

Jones used the same uniform regularization of the free sheets shed at the edges of the rigid plate [3]. However, no reg-
ularization was used for the bound vortex sheet in the kinematic condition (the left hand side of Eq. (8)), since such smooth-
ing makes the equation ill-posed. The numerical effect of the ill-posedness may be seen by replacing the Cauchy kernel in Eq.
(8) with the dp-smoothed kernel in Eq. (19). Discretizing the modified version of integral equation (8) for ), the smoothed
kernel corresponds to a matrix with singular values which become arbitrarily small as the quadrature spacing decreases be-
low 8o. With the bound vortex sheet unsmoothed, and the free sheets smoothed uniformly by &, Eq. (8) becomes

(19)

1 ! V(S/,t) ! _
E]C " ds =f(s,t) = v(s,t) + Re

T-(t) ¢ ty_ AT AT r) s P _ 71 1A
7i/ IéC(s,t) (', ndr 4+ / |f(s’t) (I, tydr 20)
0 0 ¢

o (s.,0)— (I, Of +82 27 (s.0) = (I, D))+

and Eq. (18) becomes

1 V(s r_(t) T
atZ(r,t)—i/ Mdﬂifo . G

“2mi [, U0 - s 0" 2w I.t)—(I'.of +
1 [0 o —ure /
__./ i it )V é/( 2) SdI', T e[0,I(t)). .
2mi Jo (I, 0) - LI, 0)] + 8

The smoothing in Eq. (20) removes the logarithmic singularities at s = +1 from f, so that its Chebyshev coefficients decay rap-
idly. The corresponding vorticity y(s,t) may then be represented accurately by a truncated version of the series in (14) with a
modest number of modes (enough to resolve a length scale ). We refer to methods which employ the type of smoothing in
both of Egs. (20) and (21), which is discontinuous across the plate edges, as “standard smoothing” methods, in order to dis-
tinguish them from the two new methods in this work.

3.1. Time-stepping

We simulate the flow when the plate moves sinusoidally as in Eq. (1) with KC = 3.8, an example studied by Jones [3]. Jones
used an initial condition in which small point vortices are placed below the plate edges at the first time step. Here we adopt a
similar initial condition, which uses a small initial segment of the vortex sheet as the initial condition.

Algorithm 1. Standard Smoothing

Initialization:

At time t = 0, the plus vortex sheet is initialized with a single point at 1 —i%€, the s =1 edge of the plate, and the minus
vortex sheet is initialized with a single point at —1 — i%C, the s = —1 edge of the plate. Then the following iteration is per-
formed to advance the flow:

Fork=1,2,...:

(1) The plate is moved to its new position at time kAt given by Eq. (1), and new points are added to each free vortex
sheet at the new positions of the respective plate edges.

(2) The circulation in each free sheet at these points is computed by solving the two Kutta conditions (13) explicitly
for the two unknowns I',(kAt) and I"_(kAt). The desingularized version (16) with f is not used here because the
smoothing makes f in (20) bounded. To calculate the Chebyshev coefficients fy and f;, we discretize the &o-
smoothed integrals in Eq. (20) using the trapezoidal rule. The unknown total circulations I'.(kAt) appear linearly
in these coefficients. Having solved the two-by-two linear system (13) for I'.(kAt), we assign these values of the
circulation to the corresponding fluid material points at the plate edges.

(3) Compute f(s,kAt) from (20) and y(s,kAt) using Eq. (14).

(4) Evolve the points composing the free vortex sheets forward in time. This is done by computing the velocity of each
point at t = kAt from the do-smoothed version of the Birkhoff-Rott equation (21). The velocity is used to move
points of the free sheet to their positions at the next time step t= (k + 1)At. The two newly-created points are
moved with their velocity at t = kAt, using a forward-Euler time discretization. The remaining points of the free
sheet, having existed at previous times, are moved to their new positions using the second-order Adams-Bash-
forth scheme, using the values of velocity at t= (k — 1)At and kAt.

End

In Fig. 1, we give the position of the sheet computed at time t = KC, using At = KC/300. We use a Chebyshev-Lobatto dis-
cretization of the plate, convenient for obtaining Chebyshev coefficients from node values for fand y:
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Fig. 2. The total circulation in each of the free sheets versus time, for uniform delta-smoothing on the free sheets and 6, = 0.2 (solid line), 0.1 (dashed-dotted
line), and 0.05 (dashed line).

sj=cos(jm/m), j=0,...,m. (22)

We use m =41 for the simulations in Fig. 1. We use three different values of Jo: 0.2 (a), 0.1 (b), and 0.05 (c). One can obtain a
solution for arbitrarily small 5, by taking finer spacings of the free sheets (as found by [4]). Because the points on the free
sheet are evolved with a first-order scheme for time At and with a second-order scheme for subsequent time, the scheme
may be expected to have second-order convergence in At for O(1) times. Numerical evidence of second-order temporal con-
vergence of the scheme is presented in Appendix A. The convergence with respect to number of Chebyshev modes m is
approximately third-order (due to the choice of quadrature rule for Eq. (20); see Fig. A.2(a)), though the decay of the Cheby-
shev modes fi, k=1,...,m is exponential (see Fig. A.2(b)), as soon as m is large enough to resolve a length scale O(1/5y) near
the plate ends. We shall explain the square-root behavior through a model problem in the next section. Due to the O(m~2)
density of Chebyshev-Lobatto points at the plate ends, resolution requires m > d, 174 which grows slowly as 5o — 0.

The convergence of solutions with respect to J, is much slower than convergence with respect to m and At, and in some
important quantities such as the velocity of the newly-created points of the free sheet near the plate edge, O(1) errors remain
as dg — 0. The qualitative reason is that smoothing of vorticity occurs at the plate edges, where the solution is particularly
sensitive to perturbations in the equations. The positions of the vortex sheet in the three panels of Fig. 1 are similar in many
of the gross aspects but differ in some of the finer details. The positions of outermost turn of the spiral in the three panels of
Fig. 1 are similar, with a slightly decreased width in panels c and b relative to a. The rolling-up of the next vortex spiral
(above the plate in Fig. 1(c)) occurs with different timing and curvature in the three panels.

An important quantity is the total circulation in the free sheets as a function of time, plotted in Fig. 2. The three curves
show a similar pattern of increase, local maximum, and decrease. The separation between the 0.05 and 0.1 lines is greater
than half the difference between the 0.1 and 0.2 lines, indicating a convergence that is slower than first-order in do.

The numerical errors become particularly evident when we plot the vortex sheet strength 7 at the instant t = KC, in Fig. 3.
As noted in [3], the vorticity is discontinuous at the edges of the plate. Moving across the plate edge, the vorticity jumps from
zero on the plate to an order-1 value on the free sheet. This jump in 7 is a consequence of the jump in smoothing at the plate
edges in Eq. (20). Furthermore, large differences are seen in the vorticity plot among the three values of 6. This is due in part
to the displaced timing of vortex shedding due to &y evident in Figs. 1 and 2.

We now move from this particular example to a more general model problem, which will allow us to quantify precisely
the inaccuracy due to smoothing, and consider how to reduce it. Smoothing is a limiting factor in both the accuracy and the
computational cost of vortex-sheet-shedding computations. Because the maximum spacing between points on the free sheet
for stable evolution scales with ¢ as Jo tends to zero, the number of points needed to represent the free sheet grows as 1/
in this limit. Hence taking o to zero implies a large computational cost. We shall study this convergence rate and propose
alternatives which give faster convergence with increased efficiency. In particular, we shall consider the possibility of mak-
ing 6o smaller nearer the edge than farther away, with the intuition that the problem is dominated by the behavior of the
flow near the edges of the plate.

4. A model problem

To study convergence in the limit 5o — 0, we formulate a quasistatic model problem. This avoids the expense of simulat-
ing unsteady free sheets with many mesh points, and more importantly, allows a more precise study of the asymptotic
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Fig. 3. The vortex sheet strengths versus arc length position on the body (—1 <s < 1) and the free sheets, for 6o = 0.2 (solid line), 0.1 (dashed-dotted line),
and 0.05 (dashed line).

behavior of numerical schemes as Jo — 0. The parameter Jy influences the problem in both the solution of the bound
vorticity and shed vorticity—the smoothed kinematic condition (20) and the Kutta conditions (13)—and in the evolution of
the free sheet—the smoothed Birkhoff-Rott equation (21). We solve for the bound and shed vorticity as before but assume a
frozen, and simplified, geometry and distribution of vorticity on the free sheets. Instead of spirals with varying vorticity,
we model the free sheets as straight line segments extending horizontally from the edges of the plate. We assume
that the distribution of vorticity on the free sheets is uniform, but that its magnitude is set by the strength of shed
vorticity.
With these assumptions Eq. (20) simplifies to:

1/ X)) 1 Ty ! (x-X) / 1 Ty L X=X /
=— dx =f(x) =Vo— == dx + — dx 23
Zn/,]x—x’ f °Tonl-1/, (x—x) +8 2nl-1Ji (x—x)"+8 (23)
2, 2 2, 2
:V0+i I'o lo ((X+1)2+‘)g)((x_1)2+(2)) . (24)
nl-1 ((x+L)"+65)((x — L)" + d5)

Here the plus and minus free sheets occupy 1 <x <L and —L < x < —1, respectively. The plus/minus sheets have total circu-
lation Iy and uniform vortex sheet strength +1'o/(L — 1), respectively.
By the symmetry of the problem under x — —x, the Kutta condition (13) simplifies to

fo=1 / 1(1 —x) P (x)dx = 0. (25)

Inserting f from (24) into (25) gives an equation which can be solved for I'o. The resulting value is then used to compute f(x)
explicitly in Eq. (24). The bound vorticity y is then given in terms of the Chebyshev coefficients of f by Eq. (14).

In Fig. 4(a) we plot the bound vorticity y for L =4 (with similar results for any value L such that L — 1 is of order one (in
particular L — 1> d¢)), Vo =1, and &, ranging from 10° to 10! in half-decades. For 6, = 0 we denote y as J and Iy as T. In
Fig. 4(a), y is the thick dotted line. It approaches its bounded values at the plate edges with a square-root behavior, which is
implied by the desingularized form of the solution, Eq. (17). For all nonzero o,y is zero at the edges, so there is an order-1
deviation there. The 7y curves rise sharply to approach ¥, over a distance given by the x-distance between the peak of the Jo-
smoothed y curve and x = —1. These distances are plotted as triangles in Fig. 4(b), and scale as /5. The deviation |y — | at a
fixed value of x = 1/+/2 for d, > 0 is given by the circles, and also scales as /3, for small dy. The same scaling holds for the
deviation at any fixed x, —1 < x < 1. Finally, the deviation in the total circulation [’y — I'|/|To| with respect to d is plotted as
crosses. We again find a square-root behavior.

We briefly rationalize the \/5o-convergence of y and I'g by considering the Chebyshev coefficients of y in Eq. (14) ex-
pressed as weighted integrals of f{x) in Eq. (24). The Kutta condition (25) and Eq. (24) imply that

Vel T ey (x+ 1) +82)((x—1)> + )
; 747[2“_1)/*(] v log(((x+L)2+5§)((xL)2+5§) e (26)
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Fig. 4. (a) The bound vorticity y for 6, ranging from 107 to 10" in half-decades (solid lines), and d, = 0 (dotted line). (b) For each curve in ‘a’ with 5, > 0, the
x-distance from the peak of y to the x=—1 endpoint (triangles), the deviation |} — y| at x = 1/v/2 (circles), and the deviation [Ty — I'o|/|To| (crosses). The
solid line shows a square-root scaling with d.

Subtracting from Eq. (26) the same equation with o = 0 we have

o SVIToTo [ e (1 G/ 1))+ o/ (x— 1))
o o= Tl ally' = T3') = g 2 [ (1) log A+ ol DA + o0 ) @

Within p of an endpoint (|x + 1| = O(dp)), the integrand is a product of 0(55”2) (the inverse square root term) and O(1) (the
log term) integrated over a region of length O(Jp). The result is 0(5(1)/2), which is the size of the deviation in I'y. For
|x £ 1| =0(1), the integrand is a product of O(1) (the inverse square root term) and O(J) (the log term) integrated over a re-
gion of length O(1), which is O(6p), subdominant to the near-endpoint contribution. The integral in (27) is thus O((S(])/z).

Deviations between 7 and ) at |x £ 1| = O(1) can be described in terms of their Chebyshev coefficients. These can be ex-
pressed as integrals similar to that in Eq. (27), with the integrand now including the Chebyshev polynomial T;(x). The factor
Ti(x) does not change the scalings already noted for I'y — I'y. The 0(53/2) scaling of the integral is maintained, and thus de-
scribes the deviation in a fixed Chebyshev coefficient (and thus the deviation in y(x) for fixed x) as do — 0.

The form of y in Fig. 4(a) seems to agree well with the form of y for —1 <s <1 in the time-dependent simulations, exem-
plified by Fig. 3. Both show a sharp drop to zero in a region near the endpoints, which shrinks as 6o — 0. We note that in the
time-dependent simulations, in the neighborhood of the edges the vortex sheets are straight and their strengths vary con-
tinuously from their values at the edges. Thus this model may be regarded as a leading-order approximation to the vortex
sheet geometry and strength distribution in the neighborhood of the edges, where their influence on shedding is expected to
be dominant. Furthermore, solving for I'y for the whole sheet at once in the model problem approximates the accumulated
effect of nonzero 5o on I'.(t) during a time-dependent simulation.

We have addressed the convergence of y and I'. with respect to §, through the model problem. We now consider the
convergence of flow velocities on the free sheet, as well as the shape of the free vortex sheet. In Fig. 5(a) we plot u, at
the plus sheet near the plate edge for o ranging from 10~* to 10~ in half-decades. The value of u, for §, =0 is denoted
uy, and is the thick dashed line in Fig. 5(a). It tends to 1 like a square root as x decreases to 1 from above. Near the edge
uy for dp > 0 has a maximum which increases to 1.22 as do — 0. u, changes continuously to its value of 1 on the plate, but
with a diverging slope as 6o — 0. These maxima of u, are plotted as circles in Fig. 5(b). Outside of a region of width O(do)
where velocity errors are O(1), the curves converge to the unsmoothed solution like 1/5o. The velocity deviation |1, — u,|
at x = 1.2 is plotted versus &g as crosses in Fig. 5(b). The solid line shows /5, scaling. Thus the error in the position of the
vortex sheet for an unsteady simulation is expected to be dominated by an O(./d) error in velocity experienced over
0(1) time, leading to an O(+/d,) error in the position of the free vortex sheet.

We note that deviations in velocity tangent to the plate (i.e. u,) are expected to be smaller than those normal to plate (i.e.
uy). For the model problem, the vortex sheets all lie on the x-axis, so the horizontal velocity u, they induce at the x-axis is
zero. For the benchmark unsteady problem in Section 2, the plate is horizontal but the free sheet is horizontal only at the
plate edge. Farther away the free sheet is deflected from the horizontal, and it induces a tangential velocity at the plate edge
which moves the vortex sheets off of the plate. This tangential velocity induced by far-field vorticity varies more smoothly
near the plate edge than the locally-induced square-root behavior of the normal velocity shown by the dashed line in
Fig. 5(a).
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Fig. 5. (a) The vertical flow velocity u,(x) induced by the vortex sheets in the standard smoothing problem for 5o = 10~*to 107!, increasing in half-decades
(solid lines), and for 6o = 0 (dashed line). (b) Maximum differences between 6, > 0 and 6o = 0 in u, (circles) and difference at the fixed value x = 1.2 (crosses).
The fitting line above the crosses shows the power-law 4}/%.

4.1. Velocity smoothing

The model problem has quantified the error due to discontinuous vorticity smoothing at the plate edge in the solution of
the kinematic equation (20). Vorticity smoothing is only needed, however, in the Birkhoff-Rott equation (21), to permit sta-
ble evolution of the free vortex sheet as studied by Krasny [4].

This suggests a simple alternative method: solve the kinematic equation and Kutta conditions (24) and (25) with §, = 0 to
obtain the bound vorticity 7 and shed circulation Ty with zero smoothing. Then compute the velocity induced by the bound
and free vorticity along the plate and the free vortex sheet using a version of the Birkhoff-Rott equation (18) uniformly
smoothed by J;. The vertical velocity is then:

1M px=x) , 1 Ty (X +1)* + 1) ((x = 1)* + )
UY(X)‘zn]f_l (x-x/)2+5§dx ani-1° (((x+L)2+5§)((x-L)2+5%) ' 28)

The logarithmic terms come from the same integrals as in Eq. (24). Because the vorticity is continuous from the plate to the
free sheet, and the free sheet vorticity is smoothed by &;, the bound sheet vorticity must also be smoothed by J; at the plate
edge to avoid a logarithmic singularity there.

In Fig. 6(a) we plot u, versus x near the right endpoint of the plate for §; =0 and 10~* up to 10" in quarter-decades. For
61 =0 we again obtain the unsmoothed solution u, (thick dashed line). The cases with d; > 0 are shown by the lower solid
curves (for x > 1) and dashed curves (for x < 1). The lower solid curves approximate the upper solid curve well away from
x =1, but the deviation becomes larger near x = 1. The effect of 4; > 0 is to smooth the square-root behavior of u, at x=1;
the dashed lines show the smooth continuation of u, into the region x < 1. These dashed values are not used in a time-depen-
dent simulation, however; instead, the plate is evolved with its prescribed velocity which is 1 here. Thus, un