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a b s t r a c t

Current methods for computing vortex sheet separation use a regularization parameter
which is discontinuous from the body to the vortex sheet. We propose two methods for
reducing the errors associated with the discontinuity and improving convergence with
respect to the regularization parameter. The ‘‘velocity smoothing” method is the simpler
of the two, and removes the discontinuity in regularization from one of the two equations
where it occurs. The ‘‘tapered smoothing” method removes the discontinuity from both
equations. In a model problem, both methods are found to converge much more rapidly
(with exponents 3/2 and 2 versus 1/2 for the standard method) as the regularization
parameter tends to zero. Unsteady algorithms are proposed for evolving the free sheet
using the two methods, and are tested in a benchmark problem. Accuracy is significantly
improved for similar computational expense.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In a generic laminar high-Reynolds-number flow near a solid surface, a thin boundary layer of large vorticity forms at the
surface. In the limit of infinite Reynolds number (or zero dimensionless viscosity), the boundary layer width shrinks to zero.
It is then called a ‘‘vortex sheet” [1], and is a line distribution of vorticity in a two-dimensional flow. On a solid surface, the
vortex sheet strength distribution is determined by the condition that fluid does not penetrate the body together with a con-
dition on the total vorticity (or circulation) present on the body. For a sharp-edged body such as a Joukowski airfoil, the clas-
sical Kutta condition determines how the flow speed at the sharp edge can be made finite by the flux of vorticity from the
body into the flow at the sharp edge, which is known as ‘‘separation” [2]. Recently, Jones has developed a general compu-
tational method for the separation of vortex sheets from a rigid plate with prescribed motion [3]. This work builds on pre-
vious work by Krasny on computational methods for the dynamics of isolated vortex sheets [4,5] and vortex sheets shed
from a rigid plate [6]. In [7], Nitsche and Krasny simulated the axisymmetric vortex sheet shed from a rigid body (a piston
tube). They obtained very good agreement with experiments in terms of the detailed shapes of the vortex sheets as they
rolled up into vortex rings, which was an important validation for these models of vortex sheet separation. Regularization
of the vortex sheet using a smoothing parameter is a common element of these studies, and was used in earlier work by
Chorin and Bernard [8]. Regularization is one of the most robust approaches for preventing numerical instabilities in simu-
lations of vortex sheets; [5] lists some of the alternative approaches which have developed since the early simulation of Ros-
enhead [9]. The method for rigid bodies was afterwards extended to deforming bodies with motions which are prescribed
[10,11] or fully coupled to the fluid [12,13].

A more approximate model lumps the vorticity from the sheet into a small number of discrete point vortices, the strength
of which varies in time according to the Kutta condition [14–16]. Separation from a smooth surface (a cylinder) has also been
. All rights reserved.
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studied using a vortex sheet model [17]. In this case the location of separation becomes an additional unknown to be solved
for at each time step.

The convergence rate as the regularization parameter d is taken to 0 was studied in some detail by Krasny for isolated
vortex sheets [4]. For vortex sheets separating from a solid body, the convergence behavior as d ? 0 was addressed by Nit-
sche and Krasny [7], Nitsche [18], and Shukla and Eldredge [10]. However, these works did not report the convergence rate.
The present work provides a detailed study of the convergence rate and methods for its improvement. We first investigate
the convergence rate with respect to d for vortex sheets separating from a plate with sharp edges. We then propose two
numerical methods which decrease the error due to d, relative to existing methods, in the creation and dynamics of vorticity.
In Section 2 we give the equations governing vortex sheet separation and dynamics in notation similar to Jones [3]. In Sec-
tion 3 we compute the flow for a benchmark problem—a half-period of sinusoidal oscillation of a plate—using the existing
method of uniform smoothing on the free vortex sheets and zero smoothing on the plate. In Section 4 we pose a model prob-
lem which shows clearly the convergence rates with respect to d in different important quantities both near and far from the
plate edge. We study the model problem with the previous method, which we call ‘‘standard smoothing,” and with the new
methods, which we call ‘‘velocity smoothing” and ‘‘tapered smoothing.” The velocity smoothing method uses smoothing
only for computing the velocity of the free vortex sheet. The tapered smoothing method uses smoothing which tapers to zero
at the plate edge. We identify the convergence rates for all methods with respect to smoothing parameters, and criteria
needed for relatively rapid convergence.

In Section 5 we formulate a simple velocity smoothing algorithm for unsteady problems, and test it on the oscillating
plate problem. We find that errors tend to zero much more rapidly than in the standard smoothing method. In Section 6
we formulate a tapered smoothing algorithm for unsteady problems. The important features are: a new mesh for the free
vortex sheet using a ‘‘mesh function,” a power-law interpolation of the free sheet vortex sheet shape near the plate edge,
and a continual pruning of mesh points for computational efficiency. Here too, errors tend to zero rapidly, and good agree-
ment is obtained with the results of the velocity smoothing method.

2. Creation and dynamics of vortex sheets

We consider the prescribed motion of a rigid flat plate started from rest in an inviscid fluid, as in [3]. The plate moves
transversely to itself with sinusoidal oscillation, and has a position in the complex plane given by:
fðs; tÞ ¼ s� i
KC
p

cos
p

KC
t

� �
; �1 6 s 6 1: ð1Þ
Here s is arc length along the plate. As time t increases from zero, the plate velocity increases linearly, and displacement in-
creases quadratically, with time. The parameter KC, called the Keulegan–Carpenter number [19], is half the period of oscil-
lation. For small viscosity (or, in dimensionless terms, large Reynolds number), a thin boundary layer forms on the plate,
across which the component of fluid velocity tangent to the plate is brought sharply to zero on the plate [1]. Outside of
the boundary layer, the flow is nearly irrotational. At the plate edges, the fluid in the boundary layer moves off of the plate
into the outer flow, where it is called a free shear layer. In the limit that the Reynolds number becomes infinite, the boundary
layer and free shear layers tend to lines of zero thickness, and are called bound and free vortex sheets, respectively [2]. A
computed example of free vortex sheets are the dotted lines of Fig. 1, which emanate from the flat plate. The fluid velocity
is discontinuous across a vortex sheet, but only in its component tangent to the sheet. The free vortex sheets emanate from
each edge of the plate continuously in time. We represent the free vortex sheets and the body as a single complex contour
f(s, t), with signed arc length s increasing from smin(t) 6 �1 to �1 on the ‘‘minus” sheet, from �1 to 1 on the body, and from 1
to smax(t) on the ‘‘plus” sheet. The vortex sheet strength (equal to the local jump in tangential velocity) along the contour is
denoted c(s, t). Here positive c corresponds to counterclockwise fluid rotation. The cumulative circulation along the contour
is defined as the integral of vorticity:
Cðs; tÞ ¼
Z s

smin

cðs0; tÞds0: ð2Þ
By Kelvin’s Circulation Theorem, the circulation is conserved at fixed material elements of the free sheets [2]. Circulation
thus serves as a Lagrangian marker for the free vortex sheets. Following [3] we define
CþðtÞ ¼ Cð1; tÞ ¼ �
Z smax

1
cðs0; tÞds0; ð3Þ

C�ðtÞ ¼ Cð�1; tÞ ¼
Z �1

smin

cðs0; tÞds0: ð4Þ
Thus C+(t) is the negative of the total circulation in the plus sheet and C�(t) is the total circulation in the minus sheet. In (3)
we have used the fact that the total circulation in the flow is zero at all times by Kelvin’s Circulation theorem, which requires
the total circulation in the flow at any time to equal its initial value, which is zero for a flow started from rest [2].

The dynamics of the flow around a plate with prescribed motion may be summarized in three equations. The first equa-
tion is the kinematic condition, which states that the components of fluid velocity and plate velocity normal to the plate
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Fig. 1. The position of the plate and free vortex sheets at time t = KC, computed using standard smoothing with d0 = 0.2 (a), 0.1 (b), 0.05 (c).
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must match. In other words, fluid does not penetrate the plate. The second condition is the Kutta condition, which states that
fluid velocity must be finite at the edges of the plate. The third equation is the Birkhoff–Rott equation, which gives the veloc-
ity of the vortex sheets. We now derive each of these equations, similarly to [3].

The complex-conjugate of the complex fluid velocity ux + iuy induced at a point z by the bound and free vortex sheets is
given by the Biot–Savart law for vortex sheets [1,2]:
ux � iuyjz ¼
1

2pi

Z smax

smin

cðs0; tÞ
z� fðs0; tÞds0: ð5Þ
In the limit that z approaches a point f(s, t) on the rigid plate (Eq. (1)), the portion of the integral in Eq. (5) over the plate
�1 6 s 6 1 is defined as a principal value integral:
ux � iuyjfðs;tÞ ¼
1

2pi

Z
--

1

�1

cðs0; tÞ
s� s0

ds0 þ 1
2pi

Z �1

smin

cðs0; tÞ
fðs; tÞ � fðs0; tÞ ds0 þ 1

2pi

Z smax

1

cðs0; tÞ
fðs; tÞ � fðs0; tÞds0; �1 6 s 6 1: ð6Þ

¼ 1
2pi

Z
--

1

�1

cðs0; tÞ
s� s0

ds0 þ 1
2pi

Z C�ðtÞ

0

dC0

fðs; tÞ � fðC0; tÞ
� 1

2pi

Z CþðtÞ

0

dC0

fðs; tÞ � fðC0; tÞ
; �1 6 s 6 1: ð7Þ
In Eq. (7), following [3], we have reparametrized the integrals over the free sheets by circulation, which is conserved in time
on fluid particles comprising the free sheets. It is thus easy to keep track of C(s, t) at all material points on the free sheets and
obtain c(s, t) on the free sheets, when needed, as @sC(s, t).

The normal to the plate is in the +y-direction. We denote the normal component of the plate velocity by m(s, t), and set it
equal to uy in Eq. (7). After a minor rearrangement we obtain the kinematic condition:
1
2p

Z
--

1

�1

cðs0; tÞ
s� s0

ds0 ¼ f ðs; tÞ ¼ mðs; tÞ þ Re � 1
2p

Z C�ðtÞ

0

dC0

fðs; tÞ � fðC0; tÞ þ
1

2p

Z CþðtÞ

0

dC0

fðs; tÞ � fðC0; tÞ

� �
: ð8Þ
For a known right hand side, Eq. (8) is a Cauchy singular integral equation to be solved for c on the plate. A solution method
convenient for computation is to expand the right hand side f(s, t) as a Chebyshev series [20]:
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f ðs; tÞ ¼
X1
k¼0

fk cosðkhÞ; h ¼ arccosðsÞ: ð9Þ
The solution to Eq. (8) is then
cðs; tÞ ¼ 2
X1
k¼1

fk sinðkhÞ þ �f1 � 2f 0 cosðhÞ þ C
sinðhÞ ; h ¼ arccosðsÞ; ð10Þ
where C is an arbitrary constant. It is fixed by Kelvin’s Circulation theorem, which requires the total circulation in the flow to
be zero at all times. Thus
Z 1

�1
cðs0; tÞds0 � CþðtÞ þ C�ðtÞ ¼ 0: ð11Þ
With this constraint,
C ¼ CþðtÞ � C�ðtÞ
p

: ð12Þ
The Kutta condition states that the velocity must be finite at the plate edges. Thus the jump in tangential velocity c(s, t) must
be finite at s = ±1. Eq. (10) then implies that
�f1 � 2f 0 þ
CþðtÞ � C�ðtÞ

p
¼ 0: ð13Þ
Eq. (13) is two equations for two unknowns, C±(t). With C±(t) thus chosen, the bound vorticity (Eq. (10)) becomes
cðs; tÞ ¼ 2
X1
k¼1

fk sinðkhÞ: ð14Þ
For the purpose of computation, it is convenient to analytically remove the logarithmic singularities of f(s, t) in Eq. (6) at
s = ±1, which cause slow (�k�1) decay of the Chebyshev coefficients {fk}. We thus write
f ðs; tÞ ¼ ~f ðs; tÞ þ 1
2p

@sCð1; tÞ logð1� sÞ þ 1
2p

@sCð�1; tÞ logð1þ sÞ; ð15Þ
where ~f ðs; tÞ is a bounded continuous function. Therefore its Chebyshev coefficients, f~f kg, decay faster than those of f. In
terms of f~f kg the Kutta conditions (Eq. (13)) become
�~f 1 � 2~f 0 �
1
p
@sCð1; tÞð1� logð2ÞÞ þ 1

p
@sCð�1; tÞð�1� logð2ÞÞ þ CþðtÞ � C�ðtÞ

p
¼ 0: ð16Þ
Also, the solution c (Eq. (14)) becomes
cðs; tÞ ¼ 2
X1
k¼1

~f k sinðkhÞ þ 1
p
@sCð1; tÞðp� hÞ þ 1

p
@sCð�1; tÞh: ð17Þ
Continuity of c from the body to the vortex sheets may be seen by inserting h = 0 and p into Eq. (17).
Having solved for the strength of bound vorticity and the circulation in the free sheets at each time, we may apply Eq. (6)

on the free sheets to obtain the Birkhoff–Rott equation for the motion of the free sheets. A point f(C, t) on the plus free sheet,
for example, moves with the local fluid velocity given by the limit of Eq. (6) on the plus sheet which again becomes a prin-
cipal value integral, similar to that in Eq. (7):
@t
�fðC; tÞ ¼ 1

2pi

Z 1

�1

cðs0; tÞ
fðC; tÞ � fðs0; tÞds0 þ 1

2pi

Z C�ðtÞ

0

dC0

fðC; tÞ � fðC0; tÞ �
1

2pi

Z
--

CþðtÞ

0

dC0

fðC; tÞ � fðC0; tÞ ; C 2 ½0;CþðtÞÞ:

ð18Þ
For f(C, t) on the minus sheet, the principal value integral switches from the plus sheet to the minus sheet. Eqs. (16)–(18)
represent a system of equations to be solved at each time t for c(s, t) on the plate, the total circulation in the free sheets,
C±(t), and the positions of the free sheets (with ~f computed during the solution using Eqs. (8) and (15)).

3. Numerical method with uniform regularization

We first investigate a type of smoothing which has been employed in previous works [3,6,10–12] for simulating the sep-
aration of vortex sheets. After Rosenhead’s early study [9], it was observed that simple discretizations of the principal value
integral in the Birkhoff–Rott equation (18) can lead to chaotic motions as the mesh size is reduced. Krasny found that the
chaotic motions are caused by the rapid growth of discretization errors [21], and used a simple regularized form of Eq.
(6) to suppress the errors [4]:
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@t
�fðs; tÞ ¼ 1

2pi

Z smax

smin

cðs0; tÞ fðs; tÞ � fðs0; tÞ
jfðs; tÞ � fðs0; tÞj2 þ d2

0

ds0: ð19Þ
Krasny found that the errors are suppressed when the uniform smoothing parameter d0 exceeds the smallest mesh spacing in
the discretization of Eq. (19).

Jones used the same uniform regularization of the free sheets shed at the edges of the rigid plate [3]. However, no reg-
ularization was used for the bound vortex sheet in the kinematic condition (the left hand side of Eq. (8)), since such smooth-
ing makes the equation ill-posed. The numerical effect of the ill-posedness may be seen by replacing the Cauchy kernel in Eq.
(8) with the d0-smoothed kernel in Eq. (19). Discretizing the modified version of integral equation (8) for c, the smoothed
kernel corresponds to a matrix with singular values which become arbitrarily small as the quadrature spacing decreases be-
low d0. With the bound vortex sheet unsmoothed, and the free sheets smoothed uniformly by d0, Eq. (8) becomes
1
2p

Z
--

1

�1

cðs0; tÞ
s� s0

ds0 ¼ f ðs; tÞ ¼ mðs; tÞ þ Re � 1
2p

Z C�ðtÞ

0

fðs; tÞ � fðC0; tÞdC0

jfðs; tÞ � fðC0; tÞj2 þ d2
0

þ 1
2p

Z CþðtÞ

0

fðs; tÞ � fðC0; tÞdC0

jfðs; tÞ � fðC0; tÞj2 þ d2
0

" #
ð20Þ
and Eq. (18) becomes
@t
�fðC; tÞ ¼ 1

2pi

Z 1

�1

cðs0; tÞ
fðC; tÞ � fðs0; tÞds0 þ 1

2pi

Z C�ðtÞ

0

fðC; tÞ � fðC0; tÞ
jfðC; tÞ � fðC0; tÞj2 þ d2

0

dC0

� 1
2pi

Z CþðtÞ

0

fðC; tÞ � fðC0; tÞ
jfðC; tÞ � fðC0; tÞj2 þ d2

0

dC0; C 2 ½0;CþðtÞÞ: ð21Þ
The smoothing in Eq. (20) removes the logarithmic singularities at s = ±1 from f, so that its Chebyshev coefficients decay rap-
idly. The corresponding vorticity c(s, t) may then be represented accurately by a truncated version of the series in (14) with a
modest number of modes (enough to resolve a length scale d0). We refer to methods which employ the type of smoothing in
both of Eqs. (20) and (21), which is discontinuous across the plate edges, as ‘‘standard smoothing” methods, in order to dis-
tinguish them from the two new methods in this work.

3.1. Time-stepping

We simulate the flow when the plate moves sinusoidally as in Eq. (1) with KC = 3.8, an example studied by Jones [3]. Jones
used an initial condition in which small point vortices are placed below the plate edges at the first time step. Here we adopt a
similar initial condition, which uses a small initial segment of the vortex sheet as the initial condition.

Algorithm 1. Standard Smoothing

Initialization:
At time t = 0, the plus vortex sheet is initialized with a single point at 1� i KC

p , the s = 1 edge of the plate, and the minus
vortex sheet is initialized with a single point at �1� i KC

p , the s = �1 edge of the plate. Then the following iteration is per-
formed to advance the flow:
For k = 1,2, . . .:
(1) The plate is moved to its new position at time kDt given by Eq. (1), and new points are added to each free vortex
sheet at the new positions of the respective plate edges.

(2) The circulation in each free sheet at these points is computed by solving the two Kutta conditions (13) explicitly
for the two unknowns C+(kDt) and C�(kDt). The desingularized version (16) with ~f is not used here because the
smoothing makes f in (20) bounded. To calculate the Chebyshev coefficients f0 and f1, we discretize the d0-
smoothed integrals in Eq. (20) using the trapezoidal rule. The unknown total circulations C±(kDt) appear linearly
in these coefficients. Having solved the two-by-two linear system (13) for C±(kDt), we assign these values of the
circulation to the corresponding fluid material points at the plate edges.

(3) Compute f(s,kDt) from (20) and c(s,kDt) using Eq. (14).
(4) Evolve the points composing the free vortex sheets forward in time. This is done by computing the velocity of each

point at t = kDt from the d0-smoothed version of the Birkhoff–Rott equation (21). The velocity is used to move
points of the free sheet to their positions at the next time step t = (k + 1)Dt. The two newly-created points are
moved with their velocity at t = kDt, using a forward-Euler time discretization. The remaining points of the free
sheet, having existed at previous times, are moved to their new positions using the second-order Adams–Bash-
forth scheme, using the values of velocity at t = (k � 1)Dt and kDt.
End

In Fig. 1, we give the position of the sheet computed at time t = KC, using Dt = KC/300. We use a Chebyshev–Lobatto dis-
cretization of the plate, convenient for obtaining Chebyshev coefficients from node values for f and c:
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Fig. 2. The total circulation in each of the free sheets versus time, for uniform delta-smoothing on the free sheets and d0 = 0.2 (solid line), 0.1 (dashed-dotted
line), and 0.05 (dashed line).
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sj ¼ cosðjp=mÞ; j ¼ 0; . . . ;m: ð22Þ
We use m = 41 for the simulations in Fig. 1. We use three different values of d0: 0.2 (a), 0.1 (b), and 0.05 (c). One can obtain a
solution for arbitrarily small d0 by taking finer spacings of the free sheets (as found by [4]). Because the points on the free
sheet are evolved with a first-order scheme for time Dt and with a second-order scheme for subsequent time, the scheme
may be expected to have second-order convergence in Dt for O(1) times. Numerical evidence of second-order temporal con-
vergence of the scheme is presented in Appendix A. The convergence with respect to number of Chebyshev modes m is
approximately third-order (due to the choice of quadrature rule for Eq. (20); see Fig. A.2(a)), though the decay of the Cheby-
shev modes fk, k = 1, . . . ,m is exponential (see Fig. A.2(b)), as soon as m is large enough to resolve a length scale O

ffiffiffiffiffi
d0
p� �

near
the plate ends. We shall explain the square-root behavior through a model problem in the next section. Due to the O(m�2)
density of Chebyshev–Lobatto points at the plate ends, resolution requires m� d�1=4

0 , which grows slowly as d0 ? 0.
The convergence of solutions with respect to d0 is much slower than convergence with respect to m and Dt, and in some

important quantities such as the velocity of the newly-created points of the free sheet near the plate edge, O(1) errors remain
as d0 ? 0. The qualitative reason is that smoothing of vorticity occurs at the plate edges, where the solution is particularly
sensitive to perturbations in the equations. The positions of the vortex sheet in the three panels of Fig. 1 are similar in many
of the gross aspects but differ in some of the finer details. The positions of outermost turn of the spiral in the three panels of
Fig. 1 are similar, with a slightly decreased width in panels c and b relative to a. The rolling-up of the next vortex spiral
(above the plate in Fig. 1(c)) occurs with different timing and curvature in the three panels.

An important quantity is the total circulation in the free sheets as a function of time, plotted in Fig. 2. The three curves
show a similar pattern of increase, local maximum, and decrease. The separation between the 0.05 and 0.1 lines is greater
than half the difference between the 0.1 and 0.2 lines, indicating a convergence that is slower than first-order in d0.

The numerical errors become particularly evident when we plot the vortex sheet strength c at the instant t = KC, in Fig. 3.
As noted in [3], the vorticity is discontinuous at the edges of the plate. Moving across the plate edge, the vorticity jumps from
zero on the plate to an order-1 value on the free sheet. This jump in c is a consequence of the jump in smoothing at the plate
edges in Eq. (20). Furthermore, large differences are seen in the vorticity plot among the three values of d0. This is due in part
to the displaced timing of vortex shedding due to d0 evident in Figs. 1 and 2.

We now move from this particular example to a more general model problem, which will allow us to quantify precisely
the inaccuracy due to smoothing, and consider how to reduce it. Smoothing is a limiting factor in both the accuracy and the
computational cost of vortex-sheet-shedding computations. Because the maximum spacing between points on the free sheet
for stable evolution scales with d0 as d0 tends to zero, the number of points needed to represent the free sheet grows as 1/d0

in this limit. Hence taking d0 to zero implies a large computational cost. We shall study this convergence rate and propose
alternatives which give faster convergence with increased efficiency. In particular, we shall consider the possibility of mak-
ing d0 smaller nearer the edge than farther away, with the intuition that the problem is dominated by the behavior of the
flow near the edges of the plate.

4. A model problem

To study convergence in the limit d0 ? 0, we formulate a quasistatic model problem. This avoids the expense of simulat-
ing unsteady free sheets with many mesh points, and more importantly, allows a more precise study of the asymptotic
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behavior of numerical schemes as d0 ? 0. The parameter d0 influences the problem in both the solution of the bound
vorticity and shed vorticity—the smoothed kinematic condition (20) and the Kutta conditions (13)—and in the evolution of
the free sheet—the smoothed Birkhoff–Rott equation (21). We solve for the bound and shed vorticity as before but assume a
frozen, and simplified, geometry and distribution of vorticity on the free sheets. Instead of spirals with varying vorticity,
we model the free sheets as straight line segments extending horizontally from the edges of the plate. We assume
that the distribution of vorticity on the free sheets is uniform, but that its magnitude is set by the strength of shed
vorticity.

With these assumptions Eq. (20) simplifies to:
1
2p

Z
--

1

�1

cðx0Þ
x� x0

dx0 ¼ f ðxÞ ¼ V0 �
1

2p
C0

L� 1

Z �1

�L

ðx� x0Þ
ðx� x0Þ2 þ d2

0

dx0 þ 1
2p

C0

L� 1

Z L

1

x� x0

ðx� x0Þ2 þ d2
0

dx0 ð23Þ

¼ V0 þ
1

4p
C0

L� 1
log

ððxþ 1Þ2 þ d2
0Þððx� 1Þ2 þ d2

0Þ
ððxþ LÞ2 þ d2

0Þððx� LÞ2 þ d2
0Þ

 !
: ð24Þ
Here the plus and minus free sheets occupy 1 < x < L and �L < x < �1, respectively. The plus/minus sheets have total circu-
lation �C0 and uniform vortex sheet strength �C0/(L � 1), respectively.

By the symmetry of the problem under x ? �x, the Kutta condition (13) simplifies to
f0 ¼
1
p

Z 1

�1
ð1� x2Þ�1=2f ðxÞdx ¼ 0: ð25Þ
Inserting f from (24) into (25) gives an equation which can be solved for C0. The resulting value is then used to compute f(x)
explicitly in Eq. (24). The bound vorticity c is then given in terms of the Chebyshev coefficients of f by Eq. (14).

In Fig. 4(a) we plot the bound vorticity c for L = 4 (with similar results for any value L such that L � 1 is of order one (in
particular L � 1� d0)), V0 = 1, and d0 ranging from 10�6 to 10�1 in half-decades. For d0 = 0 we denote c as �c and C0 as C0. In
Fig. 4(a), �c is the thick dotted line. It approaches its bounded values at the plate edges with a square-root behavior, which is
implied by the desingularized form of the solution, Eq. (17). For all nonzero d0,c is zero at the edges, so there is an order-1
deviation there. The c curves rise sharply to approach �c, over a distance given by the x-distance between the peak of the d0-
smoothed c curve and x = �1. These distances are plotted as triangles in Fig. 4(b), and scale as

ffiffiffiffiffi
d0
p

. The deviation j�c� cj at a
fixed value of x ¼ 1=

ffiffiffi
2
p

for d0 > 0 is given by the circles, and also scales as
ffiffiffiffiffi
d0
p

for small d0. The same scaling holds for the
deviation at any fixed x, �1 < x < 1. Finally, the deviation in the total circulation jC0 � C0j=jC0jwith respect to d0 is plotted as
crosses. We again find a square-root behavior.

We briefly rationalize the
ffiffiffiffiffi
d0
p

-convergence of c and C0 by considering the Chebyshev coefficients of c in Eq. (14) ex-
pressed as weighted integrals of f(x) in Eq. (24). The Kutta condition (25) and Eq. (24) imply that
C�1
0 ¼

�V�1
0

4p2ðL� 1Þ

Z 1

�1
ð1� x2Þ�1=2 log

ððxþ 1Þ2 þ d2
0Þððx� 1Þ2 þ d2

0Þ
ððxþ LÞ2 þ d2

0Þððx� LÞ2 þ d2
0Þ

 !
dx: ð26Þ
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Fig. 4. (a) The bound vorticity c for d0 ranging from 10�6 to 10�1 in half-decades (solid lines), and d0 = 0 (dotted line). (b) For each curve in ‘a’ with d0 > 0, the
x-distance from the peak of c to the x = �1 endpoint (triangles), the deviation j�c� cj at x ¼ 1=

ffiffiffi
2
p

(circles), and the deviation jC0 � C0j=jC0j (crosses). The
solid line shows a square-root scaling with d0.
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Subtracting from Eq. (26) the same equation with d0 = 0 we have
C0 � C0 ¼ C0C0ðC�1
0 � C�1

0 Þ ¼
�V�1

0 C0C0

4p2ðL� 1Þ �
Z 1

�1
ð1� x2Þ�1=2 log

ð1þ ðd0=ðxþ 1ÞÞ2Þð1þ ðd0=ðx� 1ÞÞ2Þ
ð1þ ðd0=ðxþ LÞÞ2Þð1þ ðd0=ðx� LÞÞ2Þ

 !
dx: ð27Þ
Within d0 of an endpoint (jx ± 1j = O(d0)), the integrand is a product of Oðd�1=2
0 Þ (the inverse square root term) and O(1) (the

log term) integrated over a region of length O(d0). The result is Oðd1=2
0 Þ, which is the size of the deviation in C0. For

jx ± 1j = O(1), the integrand is a product of O(1) (the inverse square root term) and O(d0) (the log term) integrated over a re-
gion of length O(1), which is O(d0), subdominant to the near-endpoint contribution. The integral in (27) is thus Oðd1=2

0 Þ.
Deviations between c and �c at jx ± 1j = O(1) can be described in terms of their Chebyshev coefficients. These can be ex-

pressed as integrals similar to that in Eq. (27), with the integrand now including the Chebyshev polynomial Tk(x). The factor
Tk(x) does not change the scalings already noted for C0 � C0. The Oðd1=2

0 Þ scaling of the integral is maintained, and thus de-
scribes the deviation in a fixed Chebyshev coefficient (and thus the deviation in c(x) for fixed x) as d0 ? 0.

The form of c in Fig. 4(a) seems to agree well with the form of c for �1 < s < 1 in the time-dependent simulations, exem-
plified by Fig. 3. Both show a sharp drop to zero in a region near the endpoints, which shrinks as d0 ? 0. We note that in the
time-dependent simulations, in the neighborhood of the edges the vortex sheets are straight and their strengths vary con-
tinuously from their values at the edges. Thus this model may be regarded as a leading-order approximation to the vortex
sheet geometry and strength distribution in the neighborhood of the edges, where their influence on shedding is expected to
be dominant. Furthermore, solving for C0 for the whole sheet at once in the model problem approximates the accumulated
effect of nonzero d0 on C±(t) during a time-dependent simulation.

We have addressed the convergence of c and C± with respect to d0 through the model problem. We now consider the
convergence of flow velocities on the free sheet, as well as the shape of the free vortex sheet. In Fig. 5(a) we plot uy at
the plus sheet near the plate edge for d0 ranging from 10�4 to 10�1 in half-decades. The value of uy for d0 = 0 is denoted
�uy, and is the thick dashed line in Fig. 5(a). It tends to 1 like a square root as x decreases to 1 from above. Near the edge
uy for d0 > 0 has a maximum which increases to 1.22 as d0 ? 0. uy changes continuously to its value of 1 on the plate, but
with a diverging slope as d0 ? 0. These maxima of uy are plotted as circles in Fig. 5(b). Outside of a region of width O(d0)
where velocity errors are O(1), the curves converge to the unsmoothed solution like

ffiffiffiffiffi
d0
p

. The velocity deviation j�uy � uyj
at x = 1.2 is plotted versus d0 as crosses in Fig. 5(b). The solid line shows

ffiffiffiffiffi
d0
p

scaling. Thus the error in the position of the
vortex sheet for an unsteady simulation is expected to be dominated by an O

ffiffiffiffiffi
d0
p� �

error in velocity experienced over
O(1) time, leading to an O

ffiffiffiffiffi
d0
p� �

error in the position of the free vortex sheet.
We note that deviations in velocity tangent to the plate (i.e. ux) are expected to be smaller than those normal to plate (i.e.

uy). For the model problem, the vortex sheets all lie on the x-axis, so the horizontal velocity ux they induce at the x-axis is
zero. For the benchmark unsteady problem in Section 2, the plate is horizontal but the free sheet is horizontal only at the
plate edge. Farther away the free sheet is deflected from the horizontal, and it induces a tangential velocity at the plate edge
which moves the vortex sheets off of the plate. This tangential velocity induced by far-field vorticity varies more smoothly
near the plate edge than the locally-induced square-root behavior of the normal velocity shown by the dashed line in
Fig. 5(a).
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Fig. 5. (a) The vertical flow velocity uy(x) induced by the vortex sheets in the standard smoothing problem for d0 = 10�4 to 10�1, increasing in half-decades
(solid lines), and for d0 = 0 (dashed line). (b) Maximum differences between d0 > 0 and d0 = 0 in uy (circles) and difference at the fixed value x = 1.2 (crosses).
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4.1. Velocity smoothing

The model problem has quantified the error due to discontinuous vorticity smoothing at the plate edge in the solution of
the kinematic equation (20). Vorticity smoothing is only needed, however, in the Birkhoff–Rott equation (21), to permit sta-
ble evolution of the free vortex sheet as studied by Krasny [4].

This suggests a simple alternative method: solve the kinematic equation and Kutta conditions (24) and (25) with d0 = 0 to
obtain the bound vorticity �c and shed circulation C0 with zero smoothing. Then compute the velocity induced by the bound
and free vorticity along the plate and the free vortex sheet using a version of the Birkhoff–Rott equation (18) uniformly
smoothed by d1. The vertical velocity is then:
uyðxÞ ¼
1

2p

Z
--

1

�1

�cðx0Þðx� x0Þ
ðx� x0Þ2 þ d2

1

dx0 � 1
4p

C0

L� 1
log

ððxþ 1Þ2 þ d2
1Þððx� 1Þ2 þ d2

1Þ
ððxþ LÞ2 þ d2

1Þððx� LÞ2 þ d2
1Þ

 !
: ð28Þ
The logarithmic terms come from the same integrals as in Eq. (24). Because the vorticity is continuous from the plate to the
free sheet, and the free sheet vorticity is smoothed by d1, the bound sheet vorticity must also be smoothed by d1 at the plate
edge to avoid a logarithmic singularity there.

In Fig. 6(a) we plot uy versus x near the right endpoint of the plate for d1 = 0 and 10�4 up to 10�1 in quarter-decades. For
d1 = 0 we again obtain the unsmoothed solution �uy (thick dashed line). The cases with d1 > 0 are shown by the lower solid
curves (for x > 1) and dashed curves (for x < 1). The lower solid curves approximate the upper solid curve well away from
x = 1, but the deviation becomes larger near x = 1. The effect of d1 > 0 is to smooth the square-root behavior of uy at x = 1;
the dashed lines show the smooth continuation of uy into the region x < 1. These dashed values are not used in a time-depen-
dent simulation, however; instead, the plate is evolved with its prescribed velocity which is 1 here. Thus, unlike the standard
smoothing, velocity smoothing introduces a discontinuity in the normal velocity at the plate edge. Fig. 6(b) quantifies the
behavior of the discontinuity juy(1) � 1j as d1 ? 0 (circles). The discontinuity tends to zero like

ffiffiffiffiffi
d1
p

, shown by the fit line.
At a fixed location away from the edge x = 1.000682, we again measure the deviation in uy(x) between smoothed solutions
and the unsmoothed solution (plotted as triangles). Here we find a transition from a

ffiffiffiffiffi
d1
p

-convergence when d1 > 3 � 10�3 to
a d2

1 convergence when d1 < 3 � 10�3, also shown by a fit line passing through the triangles at the smallest values. Hence
much better accuracy is obtained more than a small distance from the plate edge. We can quantify the scaling of this small
distance more precisely. For d1 > 0, the slope of the velocity u0y has a local minimum near the plate edge (unlike �u0y, which
diverges near x = 1). The position of this minimum quantifies the region of significant deviation from the unsmoothed curve.
We plot the distance with crosses in Fig. 6(b) and find a good approximation to a linear behavior (shown with fit line). There-
fore, while the maximum error decays slowly with d1 (as a square root), this error only persists over a range which tends to
zero more rapidly—linearly with d1.

The model problem indicates the error that can be expected in evolving the free sheets with a smoothed Birkhoff–Rott
equation after the solution of c and C± without smoothing. The error is moderately large near the plate edges, but as points
are advected away from the plate edge they soon reach a region of much smaller error. In an unsteady simulation, the value





−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

x

γ

−6 −5 −4 −3 −2 −1

−10

−8

−6

−4

−2

0

log10 δ0

a b

Fig. 7. For the model problem with nonuniform d(x) (31): (a) with g = 10�2, c for d ranging from 10�6 up to 10�1 in half-decades. The unsmoothed solution
(d0 = 0) is a thick dotted line. (b) Plusses give the maximum deviation in c between smoothed and unsmoothed solutions shown in ‘a,’ where the maximum
is taken over �1 6 x 6 1, g = 10�2, and d0 is varied. The three lines of crosses give the relative deviation in C0 between smoothed and unsmoothed solutions,
for the three values of g = 10�2 (bottom plot of crosses), 10�3, and 10�4 (top plot of crosses).
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We define a length g to quantify the transition in near-edge to far-from-edge behavior in d(x). A possible choice for d(x) is
Fig. 8.
(d0 = 0)
dðxÞ ¼ d0
jðx� 1Þ=gjp

1þ jðx� 1Þ=gjp
; ð31Þ
which approaches d0 for j(x � 1)j � g. There are other possibilities for d(x) satisfying the criteria mentioned so far. The form
in (31) is convenient for defining a mesh of points in an unsteady simulation, as we shall show subsequently.

We now use the model problem to study the effect of a nonuniform d(x) on the rate of convergence to the unsmoothed
solution. In Fig. 7 we repeat the computation leading to Fig. 4 but with d(x) as in (31). We use the exponent p = 3/2, but the
results have the same asymptotic behaviors for all p bounded away from 1. As p ? 1 errors tend to the standard-smoothing
behavior of Fig. 4 in asymptotic scaling but with different constant prefactors. In Fig. 7(a), we plot convergence of c with
g = 10�2 and d0 again ranging from 10�6 up to 10�1 in half-decades. There are significant errors only for the two largest val-
ues of d0, 10�1.5 and 10�1, which are larger than g. Once d0 decreases below g, c converges rapidly and uniformly to the solu-
tion of the unsmoothed problem (thick dashed line). In Fig. 7(b) we quantify convergence in terms of the maximum deviation
in bound vorticity, jc� �cj, over�1 6 x 6 1 (plusses), and the relative deviation in total circulation jC0 � C0j=jC0j (crosses). For
total circulation three lines are shown; the topmost corresponds to g = 10�4 and the next two are for g = 10�3 and 10�2. We
find that deviations in both quantities converge like

ffiffiffiffiffi
d0
p

, as in the standard smoothing case, for d0 > g. As d0 decreases below
g, there is a smooth transition to a much more rapid d2

0-rate of convergence. The crossover in behavior when d0 	 g is illus-
trated by the three lines of crosses.

In Fig. 8, we plot the vertical velocity near the plate for the tapered smoothing model, and find convergence behavior sim-
ilar to that of c. In Fig. 8(a), the vertical velocity again shows significant deviation only for the largest two values of d0, 10�1.5
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For the model problem with variable delta (31): (a) with g = 10�2, uy for d ranging from 10�6 up to 10�1 in half-decades. The unsmoothed solution
is a thick dashed line. (b) The deviation in c between smoothed and unsmoothed solutions shown in ‘a’ at x = 1.02 (plusses) and x = 1.2 (triangles).
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and 10�1, which are larger than g. For d0 < g velocity converges uniformly to the unsmoothed solution like d2
0. In Fig. 8(b) we

plot the deviation at x = 1.02 (plusses) and x = 1.2 (triangles), and find d2
0 convergence once d0 < x � 1.

These results show that for a given d0, small ðOðd2
0ÞÞ errors can be achieved when d(s) is brought to zero over a region g

near the body edge which is somewhat larger than d0. The Oðd2
0Þ error can be attributed to the second term on the right hand

side of Eq. (30), which gives the far-field error for a point vortex source smoothed by d0. We have used the model problem to
examine two new types of d-smoothing in Sections 4.1 and 4.2. We now propose unsteady schemes based on these types of
smoothing, with the goal of realizing the faster convergence we have found for the model problem.

5. A numerical method with velocity smoothing on the body

In Section 4.1 we examined the error due to velocity smoothing in the model problem. To formulate an efficient unsteady
velocity smoothing algorithm, it is useful to combine velocity smoothing with the tapered smoothing of Section 4.2. More
precisely, we use a nonuniform smoothing function which varies from a small nonzero constant d1 � O(Dt) at the plate edge
to a larger constant d0 farther from the plate. The variation occurs over a distance g > d0:
dvðsÞ ¼ d1 þ ðd0 � d1Þ
jðs� 1Þ=gjp

1þ jðs� 1Þ=gjp
; s 2 ð1; smax
 ð32Þ

¼ d1; s 2 ½�1;1
: ð33Þ
dv(s) is extended to the minus sheet as an even function. The reason for using a tapered smoothing function instead of a uni-
form value of d1 is that it becomes expensive to resolve a vortex sheet for long times with a small smoothing parameter. The
vortex sheet spirals develop more inner turns for smaller d, and these turns require many points to resolve (see how the spi-
rals in Fig. 1 vary with d0). The different spatial structure inside the spiral causes little change outside the spiral, where the
flow is mainly influenced by the total circulation in the spiral. To avoid having to resolve the inner spiral structure far from
the plate, we use a larger smoothing constant d0� d1.

When the errors due to d0 and d1 are small, the total error can be expanded in a double asymptotic series of the param-
eters. The leading-order terms in the double series are the leading-order errors from each parameter separately; coupling
terms involve higher-order products. In Section 4.1 we found that velocity smoothing by d1 causes velocity errors which
are Oð

ffiffiffiffiffi
d1
p
Þ in a region extending a distance of O(d1) from the body, and velocity errors which are Oðd2

1Þ beyond this region.
In Section 4.2 we found that tapered smoothing causes errors in both the vorticity and velocity which are uniformly Oðd2

0Þ
once the tapering distance g exceeds d0.

The model problem indicates the error that can be expected in using a Birkhoff–Rott equation smoothed after the solution
of c and C± without smoothing. The error is moderately large near the plate edges, but as points are advected away from the
plate edge they rapidly reach a region of much smaller error. The value of d1 is chosen to be a multiple of the spacing between
points near the plate edge, which is proportional to the time step Dt for a given velocity tangent to the plate edge. Therefore
the error in velocity experienced by a Lagrangian point is O

ffiffiffiffiffiffi
Dt
p� �

for a duration of O(Dt), and afterwards the error in velocity
is O(Dt2). The error in position of a point as it traverses the region of O(d1) = O(Dt) from the plate edge is the integral of the
error in velocity over a time interval of O(Dt), and is thus O(Dt3/2). The error in position over the remainder of time is O(Dt2).
Hence the leading-order terms in the error are �Dt3/2 � d1

3/2 and � d2
0.

We can state the velocity smoothing algorithm in terms of its differences from the standard smoothing algorithm of Sec-
tion 3. We replace (20) with the unsmoothed kinematic equations (8) and (21) with the velocity-smoothed version
@t
�fðs; tÞ ¼ 1

2pi

Z 1

�1

cðs0; tÞðs� s0Þ
ðs� s0Þ2 þ d2

1

ds0 þ 1
2pi

Z C�ðtÞ

0

fðs; tÞ � fðC0; tÞ
jfðs; tÞ � fðC0; tÞj2 þ dvðC0Þ2

dC0

� 1
2pi

Z CþðtÞ

0

fðs; tÞ � fðC0; tÞ
jfðs; tÞ � fðC0; tÞj2 þ dvðC0Þ2

dC0; s 2 ½smin;�1Þ [ ð1; smax
: ð34Þ
Algorithm 2. Velocity Smoothing

Initialization: Same as Algorithm 1.
For k = 1,2, . . .:
(1) Same as Algorithm 1.
(2) The circulation in each free sheet at the new edge points is computed by solving the two Kutta conditions (13)

implicitly for the two unknowns C+(kDt) and C�(kDt). The desingularized version (16) is used. To calculate the
Chebyshev coefficients ~f 0 and ~f 1, we require initial guesses for the unknown total circulations in the free sheets
at the current time step C±(kDt). These guesses are used to form the @sC terms in Eq. (15), which are needed to
desingularize f in Eq. (8). We iterate using Broyden’s method [22] until we have C±(kDt) which satisfy the Kutta
condition (16) with a small tolerance 10�12. Usually only 2–3 iterations are required to solve the 2-by-2 linear sys-
tem since a very good initial guess can be extrapolated from previous time steps. Having solved for C±(kDt), we
assign these values of the circulation to the corresponding fluid material points at the plate edges.
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(3) Compute ~f ðs; kDtÞ from (15) using @sC-terms computed with correct values of C±(kDt) from step 2. Compute
c(s,kDt) using Eq. (17).

(4) Evolve the points composing the free vortex sheets forward in time as in Algorithm 1 but using the dv-smoothed
version of the Birkhoff–Rott equation (34).
End

We solve the test problem of Section 2 using uniform time-stepping with Dt = KC/600. We choose d1 = 0.01, which the
time step (and thus the spacing between points near the plate edge) is small enough to permit. We use d0 = 0.2, and
m = 141. The value of m is chosen so that there are several points on the plate which are closer to the edge than the nearest
point from the vortex sheet. This ensures that the solution for c on the body is well-resolved.

The results for the oscillating plate are shown in Fig. 9. In Fig. 9(a), the shape of the vortex sheet is similar to that in
Fig. 1(c), which used a uniform d0 = 0.05. The vortices which are beginning to form in Fig. 9(a) are somewhat tighter spirals.
Also, the vortex sheet is curved more sharply at the plate edge, and does not extend as far from the plate in the horizontal or
vertical directions. In Fig. 9(b) we plot the distribution of c versus s, which is dramatically different from the plots in Fig. 3.
The sharp spike in vorticity at the plate edges is resolved here because the spacing of points on the free sheet and plate near
the plate edge is less than 10�3, which is smaller than the spike width, which is larger than 10�2. Fig. 9(c) shows the values of
dv(s) (plusses) near the s = 1 edge, together with the spacing between points on the free-sheet mesh (crosses). It may be seen
that a value significantly smaller than d1 = 0.01 could cause problems in the stability of the vortex sheet dynamics for this
time step. Fig. 9(d) shows the time-evolution of total circulation in the minus sheet for velocity smoothing (lower solid line)
compared with the three lines of Fig. 2. The curves are qualitatively similar but the difference between the current curve and
those for uniform d0 is significant. We recall that for the model problem, the convergence with uniform d0 occurs at a rate
�

ffiffiffiffiffi
d0
p

.
In Table 1, in the first five rows, we list the maximum circulation shed for five different time steps, decreasing by a factor

of 2. Smaller Dt permits smaller d1, in proportion to Dt. The relative deviations between the values of Cv (denoting circula-
tion for the velocity smoothing algorithm) in the first four rows decrease by a factors of approximately four with each halv-
ing of the time step. At Dt = 2KC/600 and below, the relative error stagnates at about 10�3. The cause appears to be the error
in approximating the initial spiral-vortices by line segments, together with the impulsive acceleration at t = 0. The last four
rows of the table show the effect of varying d0, with g = 2d0. In the velocity smoothing method the relative error again stag-
nates at about 10�3 once d0 reaches 0.1. For comparison the results of the standard smoothing method (denoted jCsj) are
shown in the last column. The values are well fit by a line of form jCsj ¼ C

ffiffiffiffiffi
d0
p

which reaches jCsj = 5.3 at d0 = 0.
A consequence of using smoothing only for the Birkhoff–Rott equation is that the integrals over the free sheets must be

computed twice per time step: once for Eq. (8) and once for Eq. (34). The work can be reduced to nearly that of a single com-
putation by using the same smoothed kernel for the free sheets at a sufficient distance from the plate edge. Another conse-
quence of using smoothing only for the Birkhoff–Rott equation is that it introduces error into the no-penetration condition
on the plate. We note, however, that such error already exists in the standard smoothing algorithm, because of the discrete
plate mesh. The no-penetration error due to the discrete plate mesh becomes significant when the free sheet becomes nearer
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Table 1
Maximum circulation in the velocity smoothing method ðjCv

�ðtÞjÞ and standard smoothing method ðjCs
�ðtÞjÞ for the benchmark problem of Section 2.

Dt d1 d0 MaxjCv
�ðtÞj MaxjCs

�ðtÞj

16KC/600 1.6Dt 0.2 5.1016 –
8KC/600 1.6Dt 0.2 5.2474 –
4KC/600 1.6Dt 0.2 5.2746 –
2KC/600 1.6Dt 0.2 5.2692 –
KC/600 1.6Dt 0.2 5.2614 –

2KC/600 1.6Dt 0.2 5.2692 5.7432
2KC/600 1.6Dt 0.1 5.3061 5.5859
2KC/600 1.6Dt 0.05 5.3075 5.4940
2KC/600 1.6Dt 0.025 5.2939 5.4337
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to the plate than the mesh spacing. By confining the region of d1-smoothing on the plate to a distance of O(d1) from the plate
edges, the no-penetration error due to velocity smoothing can be reduced significantly relative to that from the discrete
plate mesh. We now discuss the tapered smoothing algorithm, which does not introduce error into the no-penetration
condition.

6. A numerical method with tapered regularization

In Section 4.2 we solved the model problem with tapered smoothing, which avoids the nonzero smoothing at the plate
edge present in the velocity smoothing method. We now propose an algorithm for unsteady simulations with zero smooth-
ing at the plate edge. When evolving the free vortex sheets, we must take care that the spacing between mesh points remains
smaller than the local value of the smoothing function.

In Section 3, where d is uniform, a single new point was inserted into the free sheet at the plate edge at each time step. If
the spacing between points becomes larger than d0, numerical instability may occur. The spacing between points is a product
of the time step Dt with the flow speed tangent to the plate l(s, t) evaluated at the edges s = ±1. Hence we obtain a constraint
Dt < d0/l(±1, t). This constraint is usually not very severe for d0 ranging from 0.05 to 0.2 as in Section 3 and previous works
[3,10], since l(±1, t) is typically close to 1 in order of magnitude for an oscillatory flow nondimensionalized on plate length
and oscillation period as in Section 3.

The model problem with nonuniform d(s) has shown that relatively fast ðOðd2
0ÞÞ and uniform convergence of c can be ob-

tained when d(s) tends to zero faster than j1 � sj as s approaches 1. Since the spacing between points should be smaller than
d(s), the spacing between mesh points should also tend to zero faster than j1 � sj, which is also their distance from the plate
edge, along the free sheet. In this case it is not sufficient to insert a single new point into the free sheet at the plate edge at
each time step as in Section 3. If the tangential flow speed l(1, t) is nearly constant in time, the points will be nearly uni-
formly spaced, so their spacing will tend to zero like j1 � sj as s approaches 1. This convergence is too slow to be bounded
by a d(s) � j1 � sjp, p > 1. If the tangential flow speed l(1, t) increases in time, the spacing between points will increase
approaching the plate edge, which is even worse.

Our modification for nonuniform d(s) is to insert multiple new points into the free sheet with each time step so as to guar-
antee a mesh spacing smaller than d(s) over a region of the free sheet which can be made arbitrarily close to the plate edge.
We thus avoid numerical instabilities due to insufficient spacing. An additional benefit of this approach is that we obtain
higher resolution nearer the plate edge than farther away. Since the flow is expected to exhibit sharper gradients near
the plate edges, this is a more efficient apportionment of mesh resolution than is a uniform mesh.

We again consider the smoothing function (31) from Section 4.2, but which is now a function of arc length s:
dtðsÞ ¼ d0
jðs� 1Þ=gjp

1þ jðs� 1Þ=gjp
: ð35Þ
We first determine a mesh which has a spacing smaller than dt(s) given in (35). To avoid numerical instability, our mesh must
have at most this (nonuniform) spacing between points.

6.1. Mesh function

We define a mesh function s(k) which maps points indexed by positive integers k onto free sheet positions with arc length
s. We find s(k) by solving a differential equation which approximates the condition that the spacing between adjacent points
is a fixed fraction c2 of dt(s):
ds
dk
¼ c2dtðsÞ: ð36Þ
Using dt(s) given in Eq. (35), Eq. (36) may be integrated to yield



5294 S. Alben / Journal of Computational Physics 229 (2010) 5280–5298
g
c2d0
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1�p
 !

¼ kþ c: ð37Þ
The constant c is fixed by specifying that the first point k = 1 lies at a known arc length from the plate edge. For the choices
p=3/2 or 2, Eq. (37) may be solved explicitly for s by solving a cubic or quadratic equation. As k increases, the mesh points
approach the plate edge with increasing density (which is necessary since dt(s) tends to 0). Using Eq. (37) we find that for
large k, the location of the points and the spacing between neighbors scale as
ðs� 1Þ � k1=ð1�pÞ
; ð38Þ

dðsÞ � ðs� 1Þp � kp=ð1�pÞ
: ð39Þ
For p ¼ 2; 3
2 ;

4
3 ; . . . ; nþ1

n ; . . ., these values are
ðs� 1Þ � k�n
; ð40Þ

dðsÞ � ðs� 1Þp � k�ðnþ1Þ
: ð41Þ
As the exponent p decreases towards 1, n increases. Thus the free sheet mesh points tend to the plate edge more rapidly.
Thus it is possible to represent the part of the free sheet up to a given distance from the plate edge with fewer points. How-
ever, the function dt(s) becomes less smooth at s = 1 as p decreases towards 1. In particular, the second derivative is singular
for p < 2, and the first derivative approaches a jump as p tends to 1.

With only a finite number of points in the mesh, there is a gap from the last mesh point to the plate edge. The last mesh
point has k = kmax and distance from the plate edge � k�n

max (from (40)). The spacing between the last two mesh points is
� k�ðnþ1Þ

max � k�n
max (from (41)). Thus at the last mesh point, there is an abrupt change in mesh spacing, from � k�ðnþ1Þ

max to a much
larger value � k�n

max � dðsÞ. This change leads to inaccuracy when computing the velocity of the last mesh point and nearby
points using the discretized Birkhoff–Rott equation.

One way to remedy this is to extend the mesh into the gap, with uniform spacing equal to the spacing between the last
two points of the mesh function. As these new ‘‘gap points” approach the plate edge, the local value of dt(s) falls below the
uniform mesh spacing, so these points may not be evolved forward in time stably using the smoothed Birkhoff–Rott equa-
tion. However, they may still be used as source points of vorticity for the tapered-smoothing kinematic equation:
1
2p

Z
--

1

�1

cðs0; tÞ
s� s0

ds0 ¼ f ðs; tÞ ¼ mðs; tÞ þ Re � 1
2p

Z C�ðtÞ

0

fðs; tÞ � fðC0; tÞdC0

jfðs; tÞ � fðC0; tÞj2 þ dtðC0Þ2
þ 1

2p

Z CþðtÞ

0

fðs; tÞ � fðC0; tÞdC0

jfðs; tÞ � fðC0; tÞj2 þ dtðC0Þ2

" #

ð42Þ
and the tapered-smoothing Birkhoff–Rott equation:
@t
�fðs; tÞ ¼ 1

2pi

Z 1

�1

cðs0; tÞ
s� s0

ds0 þ 1
2pi

Z C�ðtÞ

0

fðs; tÞ � fðC0; tÞ
jfðs; tÞ � fðC0; tÞj2 þ dtðC0Þ2

dC0

� 1
2pi

Z CþðtÞ

0

fðs; tÞ � fðC0; tÞ
jfðs; tÞ � fðC0; tÞj2 þ dtðC0Þ2

dC0; s 2 ½smin;�1Þ [ ð1; smax
: ð43Þ
We use the gap points in computing the integrals on the right hand side of Eqs. (42) and (43). The integrand then varies
smoothly over the quadrature points when the target points on the left hand side are the last several mesh function points.
We evolve the mesh function points forward (stably) using Eq. (43), but do not evolve the gap points forward.
6.2. Time-stepping

Having defined a mesh which meets the spacing requirements for stable evolution of the free vortex sheets, we now de-
scribe how the mesh is used in an unsteady algorithm. At each time step, we advance the free sheets and plate in an alter-
nating fashion as before. Each time we advance the plate, we interpolate to find the shape of the free sheet between the plate
edges and the previously-advanced free sheet. On the first time step, the shape is assumed to be a small semicircle (an
approximation to the outer turn of a spiral). On subsequent steps, the shape is assumed to be a power-law function of form
y� yð�1Þ � Cðx� xð�1ÞÞa ð44Þ
near the plate edges s = ±1. We know the plate edge position x(±1) + iy(±1) and use the slopes at the plate edge and the end of
the previously-advanced free sheet to determined C and a. A power-law fit is appropriate because the normal velocity has a
square-root behavior near the plate edge (Fig. 6(a)), so the position will also have a power-law behavior for a smooth tan-
gential velocity near the plate edges.

For computational efficiency it is useful to eliminate points when the mesh spacing is much finer than dt(s). This occurs as
the high-density mesh near the plate edge is advected away from the plate, where dt(s) is larger. At each time step we check
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the spacing between the two nearest neighbors of every other point in the free sheet after advancing it forward with the
Birkhoff–Rott equation. If we find that the spacing is smaller than
c3dtðsÞ; ð45Þ
where c3 is a small fraction (here we use 1/5), the central point may be safely eliminated and the density will be suffi-
ciently high for stable and accurate evolution. We repeat this check until no more points can be removed, and then proceed
to solve the kinematic condition and Kutta condition with the remaining free sheet points and their circulations. Since the
cost of computing nearest-neighbor distances is linear in the number of free sheet points, the cost of removing points is
insignificant compared to the evaluation of the Birkhoff–Rott equation (which is quadratic in the number of free sheet
points).

Algorithm 3. Tapered Smoothing

Initialization: Same as Algorithm 1.
For k = 1,2, . . .:
(1) The plate is moved to its new position at time kDt given by Eq. (1). An interpolated sheet shape is fit to the interval
between the existing free sheet and the plate edges using Eq. (44). Mesh function points are added to a fraction c4

of the total arc length of the interpolated sheet shape starting from the existing free sheet using the mesh function
(37). Gap points are used to fill the remaining portion of the interpolated sheet shape as described in Section 6.1.
The constant c in (37) is fixed by setting the first point k = 1 to lie at the last point of the existing free sheet.

(a) Remove superfluous points according to (45).
(2) Same as Algorithm 2, but using Eq. (42) in place of Eq. (8). Also, monotonic cubic Hermite interpolation is used to
obtain the values of C at new points in the interpolated interval created in step 1, using the values of C at previ-
ously existing free sheet points and at the plate edge.

(3) Same as Algorithm 2, but using Eq. (42) in place of Eq. (8). C is interpolated at new points in the interpolated inter-
val as in step 2.

(4) Evolve the mesh function points but not the gap points forward in time as in Algorithm 1 but using the dt-
smoothed version of the Birkhoff–Rott equation (43), as described in Section 6.1.
End

The choice of the fraction c4 in step 1 merits further discussion. In principle we would like to add mesh function points
as close to the plate edge as possible. However, we recall that the velocity has a square-root behavior at the plate edge
(Fig. 6(a)). Hence the multistep schemes we use here (Forward Euler and Two-step Adams Bashforth) will only give accu-
rate results if the points travel a small distance relative to their distance from the plate edge. Then the points will be
sufficiently far from the square root velocity singularity so that the local Taylor expansion of the velocity used in mul-
tistep schemes is accurate over the distance traveled by the points. In the results to be presented we set c4 = 1/6, so
new mesh function points fill 1/6 of the interpolated sheet shape and gap points fill the remaining 5/6. Mesh function
points travel only about 1/6 as far as their distance from the plate edge on the first time step. On subsequent time steps
the points are farther from the singularity so the multistep schemes are sufficiently accurate for all points for which they
are used.

One alternative approach to evolving points near the square-root velocity singularity is to estimate the square-root
behavior of velocity at each time step and correct the motion of the points accordingly. Another possibility is to switch from
a Lagrangian to an Eulerian representation of the vortex sheet near the plate edge. At a fixed arc length distance s from the
edge, velocities vary more smoothly in time than for a fixed material point, so conventional time-stepping methods can be
applied for the Eulerian velocity of the curve, which is its velocity normal to itself. This approach introduces new issues asso-
ciated with updating the circulation in the Eulerian coordinate, where it is no longer conserved in time, and introduces new
sources of instability in coupling the motion of the vortex sheet to its shape through the local normal vector. We have not
been able to find a reasonably simple way to implement either of these alternatives thus far.

We now give the result of the tapered smoothing method for the oscillating plate problem considered in Section 2. In
practice, we use the velocity smoothing method (Algorithm 2) for the first several time steps and then switch to Algorithm
3. This start-up phase is needed to generate 1–1.5 complete turns of the vortex spiral which is the asymptotic early time
solution obtained by Pullin [23]. Otherwise, seemingly small deviations from the correct spiral solution lead to instability
in the early evolution of the vortex sheet under Algorithm 3, partly due to the sheet interpolation near the plate edge in step
1. There is a sensitive coupling between the small initial vortex sheet shape and the circulation produced at the plate edge.
This coupling becomes less sensitive as a larger-scale flow is established.

The error due to the start-up with velocity smoothing can be made arbitrarily small by taking a fixed number of initial
time steps which are arbitrarily small. For example, we take a uniform time step Dt = KC/1200, and use d1 = 10�3 for the first
20 time steps and obtain vortex spirals with one complete turn and total circulation 0.024. Reducing Dt to KC/4800, we can
reduce d1 to 3 � 10�4. Since d1 is small, this initial uniform smoothing causes errors which are relatively insignificant. The
time step can be gradually increased once the initial vortex spiral is established.
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Fig. 10. (a) The position of the plate and free vortex sheets at time t = KC. (b) The distribution of c versus s at time t = KC. (c) The vortex sheet smoothing
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Table 2
Maximum circulation in the tapered smoothing method ðjCt

�ðtÞjÞ compared with velocity smoothing ðjCv
�ðtÞjÞ and standard smoothing ðjCs

�ðtÞjÞmethods for the
benchmark problem of Section 2.

Dt d0 MaxjCt
�ðtÞj MaxjCv

�ðtÞj MaxjCs
�ðtÞj

2KC/600 0.2 5.2734 5.2692 5.7432
2KC/600 0.1 5.2971 5.3061 5.5859
2KC/600 0.05 5.2897 5.3075 5.4940
2KC/600 0.025 5.2849 5.2939 5.4337
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In Fig. 10 we show the result of this method for the oscillating plate problem considered in Section 2. We use d0 = 0.2 and
g = 2d0 = 0.4. The value of g is large enough to obtain quadratic convergence as d0 ? 0; see Section 4.2. In Fig. 10(a) we obtain
a sheet shape which is more similar to that in Fig. 9(a) than to the shapes with uniform delta-smoothing, Fig. 1. The distri-
bution of vorticity in Fig. 10(b) is also very similar to that in Fig. 9(b). There is an 8% difference in the peak values of vorticity
in the two curves. Because the peak is very sharp, this value is sensitive to small deviations in the dynamics of the flows. In
Fig. 10(c) the spacing between points in the plus sheet near the plate edge at s = 1 is shown (crosses) together with the values
of vortex sheet smoothing dt(s) (plusses). The spacing is significantly smaller than dt(s) except very close to the edge, where
the points are the ‘‘gap points” defined previously, used only as sources of vorticity (to have a smooth mesh), and not evolved
forward with the Birkhoff–Rott equation. In Fig. 10(d) we compare the total circulation with the case of velocity smoothing
(Fig. 9(d)), and find very good agreement.

In Table 2, we list the maximum circulation shed for the tapered smoothing case (Ct) at four values of d0, and compare
the values with those for the velocity smoothing case (Cv) and standard smoothing (Cs). Despite significant differences in
Algorithms 2 and 3, there is good agreement between Ct and Cv with relative error of about 2 � 10�3. As stated previously,
this level of error is associated with the initial approximation of the self-similar spiral during the impulsive acceleration of
the plate. In Appendix A we give similar data for the wake half-width, and find that the convergence of the tapered
smoothing and velocity smoothing methods are superlinear while the convergence of the standard smoothing method is
sublinear.
7. Summary and conclusions

We have studied numerical methods for computing vortex sheet separation for a simple solid body, a rigid plate. Earlier
studies have regularized the vortex sheet in a way that gives discontinuous solutions and errors that converge nonuniformly
and slowly (like a square root) in the regularization parameter. We have proposed two numerical methods for improving
convergence. They were analyzed first through a model problem, which shows improved convergence rates in the smoothing
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parameters. The discontinuous vorticity becomes continuous, and the square root convergence is improved to a quadratic
convergence or a 3/2-power convergence in a much smaller smoothing parameter (d1, proportional to the time step). We
then proposed time-stepping algorithms for the methods, and found much-improved accuracy relative to the earlier meth-
ods for similar computational expense.
Acknowledgment

We would like to acknowledge the support of NSF Division of Mathematical Sciences Grant 0810602.
Appendix A. Convergence rates

In Table A.1, we list the wake half-widths at t = 3.8 for the tapered smoothing case (ft), the velocity smoothing case (fv),
and the standard smoothing case (fs) at four values of d0. In the last two rows, the number in parentheses is the power-law
rate of convergence a when the error is assumed to be proportional to da

0. The exponent a is estimated from the adjacent
value of the wake half-width and the values for the two coarser meshes. The convergence rate exponents are in the range
of 1.3–2.3 for the tapered smoothing and velocity smoothing methods; both are greater than the standard smoothing expo-
nent, which averages about 0.3.

In Fig. A.1, after an initial transient of larger error, errors are reduced by a factor of approximately 4 with each halving of
the time step, indicating convergence that is second-order in Dt.

In Fig. A.2 we find third-order convergence with respect to the number of Chebyshev modes m. The reason is that a lo-
cally-second-order (globally third-order) quadrature rule is used over one subinterval of the integrals on the right hand side
of Eq. (20).
Table A.1
Wake half-width at t = 3.8 in the tapered smoothing method ðft

þÞ compared with velocity smoothing ðfv
þÞ and standard smoothing ðfs

þÞ methods for the
benchmark problem of Section 2.

Dt d0 Max(Reft
þ) Max(Refv

þ) Max(Re(fs
þ))

2KC/600 0.2 1.8370 1.8295 2.0581
2KC/600 0.1 1.8626 1.8575 2.0142
2KC/600 0.05 1.8727 (1.34) 1.8685 (1.35) 1.9758 (0.193)
2KC/600 0.025 1.8748 (2.27) 1.8713 (1.97) 1.9461 (0.371)
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as Ck
�ðtÞ, plotted is R ¼ jCk
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